「나노기술 전문인력양성과정」 종합실무 | · || 동계 교육생 모집

(2023, 10, 11.)

나노공정 및 측정기술 분야의 전문인력 양성을 목표로 나노기술 관련 장비의 운영기술, 시편의 관리기술, 불량 및 품질관리에 필요한 기본소양 및 안전관리 기술 등 전문성 함양을 위한 종합실무 교육

□ 모집요강

- ㅇ 모집기간: 10월 16일(월)~29일(일) 23시 59분, 14일간
- 이 제출방법: 교육신청서(양식)를 작성하여 교육홈페이지 또는 모아폼 제출(기관별 상이)

교육과정	교육분야	교육기간	지원자격	교육기관
종합실무 I	측정분석	12월~2월 (8주)	수료 후 6개월 이내 취업이	한국나노기술원
종합실무 I	소자공정	12월~2월 (8주)	가능하며 교육기간 동안 성실하게 출석하여 교육수료가 가능한 2024년 2월, 2024년 8월	나노종합기술원, 나노융합기술원, 대구테크노파크
종합실무Ⅱ	소자공정 심화	12월~2월 (12주)	졸업예정자 또는 졸업자(미취업자)	대구테크노파크

□ 지원자격(교육대상)

- ㅇ 학력: 이공계 대학 졸업예정자 / 졸업자(미취업자)
 - 나노 유관학과(전기, 전자, 물리, 화학, 재료, 화공 등) 우대

졸업예정 증명서류 제출 안내

- ① 졸업예정자는 교육일정 참여에 지장이 없어야 하며, 졸업예정증명이 가능해야 함
 - → 제출서류: 졸업예정증명서 또는 성적증명서(4학년 1학기 성적 포함)
- ② 현재 4학년 1학기 재학 중이며, 졸업예정증명서 발급이 어려운 경우
 - → 제출서류: 성적증명서(3학년 2학기 성적 포함) 및 4학년 1학기 수강내역 캡쳐본
 - ※ 단, 최종 선발 이후 교육 기간 중 4학년 1학기 성적이 포함되어있는 성적증명서로 반드시 다시 제출해야 하며 제출 불가시 중도탈락 처리될 수 있음
- ③ 해당 시 제출서류는 첨부된 (양식) 교육신청서 졸업(예정)증명서란에 첨부

- ㅇ 가산점 부여 항목
 - 취약계층 또는 보혼대상자: 전형별 가산점 부여(아래 해당 항목에 대해 하나만 인정)

취약계층 또는 보훈대상자(해당 항목 중 1개만 인정)

- ① 저소득자(기준 월평균소득이 전국 가구 월평균소득의 100분의 60 이하인 자)
- ② 장애인 ③ 북한이탈주민 ④ 결혼이민자 ⑤ 여성가장 ⑥ 6개월 이상 장기실직자 (최근 6개월 이내 고용된 사실이 없는 자, 졸업수료/유예는 미해당) ⑦ 보훈대상자
- ※ 증빙서류는 첨부된 교육신청서의 붙임자료 참고
- 나노기술교육과정 기반/특화과정 실습교육 수료자: 서류전형 가산점 부여(1회 적용) ※ 인정 교육기간: 2022년 3월 ~ 2023년 9월

□ 교육특전(혜택)

- ㅇ 과학기술정보통신부 지원 교육비 100% 무료(중식제공) ※ 숙박지원 불가
- ㅇ 교육기관 특화분야에 따른 맞춤형 교육 프로그램 제공
- ㅇ 향후 취업활동에 경력 증빙으로 활용할 수 있는 수료증 발급
- ㅇ 수료생 전원 '나노소자콘테스트' 참가 기회 제공 및 수상자 시상
 - 과학기술정보통신부장관상, 나노기술연구협의회장상, 국가나노인프라협의체회장상 등
※ 접수 및 평가는 2023년 9월 이후, 시상식은 11월경 진행 예정(장소는 추후 안내)
- o 취업연계 활성화를 위한 기업 방문 프로그램, Job-Fair 참가
- ㅇ 본 특전은 기관 사정에 따라 변경 또는 수정될 수 있음

□ 모집안내

- 지원방법: 개설과정 및 교육기관 확인 후 교육신청서를 작성하여 교육홈페이지 또는 모아폼 지원(기관별 상이)
 - 교육홈페이지 안내 http://edu.kontrs.or.kr/ (학습지원센터→공지사항)

- 교육내용 문의: 해당 교육기관에 직접 문의
- ㅇ 선발기준

- 서류전형: 신청동기 및 수료 후 취업계획의 구체성

- 면접전형: 취업계획의 구체성, 취업의지

O 지원시 주의사항

- 본 교육과 중복되는 기간에 시행되는 타 교육(국비지원 교육 및 나노기술연구협의회 주관 기반·특화교육)에 참여하고 있는 경우, 지원 불가
- 종합실무과정 동일교육분야 기수료자 지원 불가
 - ※ (예시) 소자공정 분야 고급교육수료자는 측정분석 분야 교육신청 가능하나, 타기관 소자공정 분야 교육신청 불가
- 교육기관 및 교육과정 중복 지원 금지(중복지원의 경우, 모든 기관 탈락 처리)
 ※ 7개 과정(종합실무 I II) 중 1개 과정만 지원 가능
- 수상경력, 경력사항, 자격증, 외국어, 유관교육 이수 등은 증빙서류를 제출하지 않은 경우에는 인정하지 않음(관련 증빙 제출 시 원본과 동일한 서류를 제출해야 함. 특히, 외국어 성적 점수 등 일부만 캡처하여 제출시 인정하지 않음)
- 기관별 전형기간이 상이하므로 반드시 홈페이지 공지사항 및 일정 확인
- 미확인으로 인한 누락 또는 불이익은 책임지지 않음

□ 교육과정

○ 종합실무 I

교육기관	지역	특화분야	교육분야	교육과정	교육인원
한국나노기술원	수원	화합물반도체	측정분석	반도체・나노 소자 측정분석 기술 교육	15명
나노종합기술원	대전	실리콘반도체	소자공정	180nm Logic CMOS 소자 제작 교육	30명
나노융합기술원	포항	반도체 • 센서	소자공정	나노소자 공정・분석 교육	15명
대구테크노파크	대구	나노복합소재	소자공정	나노소재 기반 첨단소자 제조 및 신뢰성 공정 교육	8명

○ 종합실무 Ⅱ

교육기관	지역	특화분야	교육분야	교육과정	교육인원
대구테크노파크	대구	나노복합소재	소자공정 심화	나노소재 기반 첨단소자 제조 및 신뢰성 공정 교육	4명

□ 전형일정/모집인원

구분	나노종합기술원	한국나노기술원	나노융합기술원	대구테크노파크	
교육분야	소자공정	측정분석	소자공정	소자공정/ 소자공정 심화	
전체모집인원	30명	15명	15명	12명	
접수기간		10월 16일(월) ~ 10	월 29일(일), 14일간		
제출방법	모아폼 제출		홈페이지 제출		
제출주소	https://moaform.com/ q/MGu5mo	edu.kontrs.or.kr			
서류심사(1차)	10. 30.(월)~11. 7.(호)	10. 30.(월~11. 8.(수) 10. 30.(월~11. 3.(금)		10. 30.(월)~11. 10.(금)	
서류전형 발표	11. 8.(수)	11. 10.(금)	11. 7.(화)	11. 13.(월)	
면접심사(2차)	11. 22(分~11. 23.(목)	11. 23.(목)	11. 17.(금)	11. 22.(分~11. 24.(금)	
巻 望か	11. 27.(월)	12. 1.(금) 11. 24.(금) 11. 27.(월)			
교육일정(8주)	12. 18.(월)~2. 8.(금)	12. 18.(월)~2. 8.(금)	12. 18.(월)~2. 8.(금)	12. 4.(월)~1. 26.(금)	
교육일정(12주)				12. 4.(월)~2. 23.(금)	

[※] 상기 일정은 기관 사정에 따라 추후 변동가능성 있음

□ 교육과정 문의처

구분	나노종합기술원	한국나노기술원	나노융합기술원	대구테크노파크
<u>홈</u> 페 이지	www.nnfc.re.kr *교육안내 및 신청 >교육일정 및 신청 >월간일정	www.kanc.re.kr * 교육서비스 >교육 >공지사항	www.nano.or.kr * Information >공자사항	www.dgtp.or.kr
담당 부서	나노인력양성센터	나노인력양성실	나노융합인력양성센터	혁신산업본부 청정에너지센터
연락처	042-366-2096	031-546-6237	054-279-0265	053-602-1723
e-mail	yoojy@nnfc.re.kr	ntet@kanc.re.kr	kdg4191@postech.ac.kr	hoon@dgtp.or.kr

붙임

교육과정 상세내용

□ 종합실무 |

교육기관			한국나노	기술원(수원)				
교육분야		측경	정분석	교육인원	15명			
교육과정		(종합실무I) 반도체 나노 소자 측정분석 기술 교육						
교육목표	전둔 직접	이공계 대상 미취업자를 대상으로 4차 산업혁명 핵심 분야인 반도체·나노소자의 전문교육과 첨단 측정·분석 장비를 활용한 산업현장 맞춤형 교육을 통해 교육생이 직접 측정분석 장비를 사용할 수 있는 능력을 갖춰 기업에서 필요로 하는 전문 인력을 양성하여 나노 산업분야의 경쟁력 제고						
	1. 나노소자 및 소재 측정/분석 기술 이해 및 사용법 실습 2. 측정/분석 장비를 활용한 다양한 분석 방법 실습 3. 샘플 준비를 위한 시편 제작 실습, 다양한 소자의 불량 분석 기술 이해							
		일정	주 제	일정	주 제			
교육내용		1주차	측정 분석 입문 교육	5주차	구조 분석 기술			
	2주차		나노소자 제작 실습ㅣ	6주차	광학적 특성 분석 기술			
	3주차		나노소자 제작 실습॥	7주차	전기적 특성 분석 프로젝트 과제 실습			
		4주차	나노소자 분석 기술	8주차	취업 연계 활동			
교육특징	1. 반도체·나노소자의 분석 장비 실습을 통하여 특성분석, 신뢰성평가 분야에서 활용 가능한 분석 기술을 습득 2. 측정 분석 관련 전문 지식뿐만 아니라 전문 실습과정, 취업 교육, 관련기업 탐방 등 종합적인 교육 프로그램 운영 3. 취업 연계 형 교육과정으로 기업들이 필요로 하는 맞춤형 전문 인력을 양성 하여 공급							
	No	분야	장비					
	1 분석 FE-SEM, TEM, FIB, AFM, FT-IR, XPS, Multi Prep, XRD							
활용장비	2	측정	DC Prober, Ellipsometer, Surface Profiler, Spectrophotometer, CL(Cathodoluminescence), PL mapper, CD-SEM, Stress measurement, Overlay metrology system, 웨이퍼결함검출기, Sheet resistance measurement					
	3	소자공정 (분석소자 제작)	-	-	ater, Evaporator, Stepper, Asher, CMP, PECVD 등			

교육기관	나노종합기술원(대전)							
교육분야	소자공장	d d	교육인원	30명				
교육과정	(종합·	실무 I) 180nm	Logic CMOS :	소자 제작 교육				
교육목표		비 활용 중심	180nm Logic	당 맞춤형 전문인력 양성 CMOS 소자 제작 집적공정 및				
교육내용	1. 반도체 실무 능력 함양을 위한 직무 중심 이론교육 선행 - 반도체 8대 공정 기초이론, 측정분석 기초이론, 제품불량분석 이론교육 2. 반도체 전방위 장비 순환 실습 교육 - FAB 공정 5대 영역 장비 실습 (Photo, Etch, Diffusion, Thin Film, Metrology) 3. 180nm Logic CMOS 소자 핵심 모듈 집적공정 심화교육 - 180nm Logic CMOS 집적공정 기술 개요 습득 - Gate, Silicide, Interconnection 등 CMOS 핵심 모듈별 Process Integration - 전기측정 및 구조·정성 분석 등 CMOS 소자 분석기술 활용 실습							
교육특징	즉각 투입될 수 9	있는 준 경력화 ·용 장비 중심 설	신진인력 양· 실습 교육(200	mm & 300mm 장비 라인업)	에			
	○ 장비순환실습 및	180nm Logic	CMOS 제작 집	[] [] [] []]]]]]]]]]]]]				
	No 분야		장비	명				
	1 Photo 장비 실습	ArF Scanner, I	(rF Scanner, i-	Line Stepper, Aligner, etc.				
	2 Etch 장비 실습	Dielectric Dry	Etcher, Metal	Dry Etcher, FE-SEM, etc.				
활용 장비	3 Diffusion 장비 실습	Furnace, LP	-CVD, Implanta	tion, Cleaning, CMP, etc.				
	4 Thin Film 장비 PE-CVD, Sputter, Evaporator, etc.							
	5 Defect Inspection 장비 실습	Defect Mea	surement, CD-S	SEM, Optical Scope etc.				
	6 측정 · 분석 장비 실습	SEM, TEM	, FIB, Probe, Ir	n-line Ellipsometer etc.				

교육기관		나노용	합기술원	(포항)			
교육분야	=	소자공정	교육인	원	15명		
교육과정	(종합실무I) 나노소자 공정·분석 교육						
교육목표	교육과 첨단장	이공계 대상 미취업자를 대상으로 4차 산업혁명 핵심 분야인 반도체·센서 전문 교육과 첨단장비를 활용한 산업현장 맞춤형 교육을 통해 경력화된 전문 기술 인력 양성하여 나노 산업분야의 경쟁력을 제고 함					
교육내용	1. 나노융합 소자・공정: 기초, 반도체・센서 공정・장비 교육, 반도체・센서 개론 등 - 반도체 기초 이론 및 반도체 공정 개요 - MEMS 개요, MEMS 기원, MEMS 공정소개 - 분석 기초 이론, 분석장비 개요 2. 반도체・센서 공정장비 실습 - Photo(Lithography) Process 실습, Etching Process 실습, Diffusion Process 실습, Thinfilm Process 실습 3. 분석장비를 통한 나노 구조 및 성분 분석 - SEM(고분해능 전계방출 주사전자현미경), TEM(구면수차보정 투과전자현미경), SPM(원자탐침현미경), APT(3차원원자현미경), FIB(집속이온빔), Sample Prep .System (시편제작시스템), SIMS(2차이온질량분석기) 실습 4. 심화교육을 통한 실제 장비운용 원리・방법 이해 - Positive Photo Resist 공정 최적화 - Deep Si Etching 공정 인자 분석을 통한 공정 최적화 - PZT 압전소자 개요 및 PZT 압전층 증착 공정 조건 최적화 - SiC Ni Silicide 공정 평가						
교육특징	산·학·인 2. 모든 교육 3. 경력화된 ¹	Ⅲ서 기초 교육을 통하 년 인력수요와 연계한 □ 생들이 직접 참여할 수 반도체·센서 전문인력 ! 멘토링에 의한 개별?	다양한 프 있도록 양성	로그램 개발 편성하여 장비			
	No 분야	장비	No	분야	장비		
	1 Photo Process	I-Line Stepper(11D,10C I-Line Stepper(ASML, 200) 13	표면분석	FE-SEM SPM		
	3	E-Beam Litho	15	형상/경도	Dual Beam FIB I		
	Etch	Dry Etcher_ICP2 Dry Etcher_TEL	16	분석	Dual Beam FIBII HR-[S]TEM (2100F)		
활용장비	6 Process	DRIE2	18	구조분석	HR-[S]TEM (2200FS)		
	7 Thin	UHV-CVD	19	3차원	3 Dimensional Atom Probe		
	8 Film Process	LPCVD	20	성분분석	SIMS		
	9	PECVD		니라 조···	Cutting/Grinding/Polishi/		
	10 Diffusion	Medium Current Implant High Temp Furnace	er 21	시편준비	Gentle Mill/UV/Vis/ Ion Beam Thinner		
	12 Process	Sputter		l	IOII DOUITI THIIIIICI		

교육기관	대구테크노파크(대구)				
교육분야		소자공정		교육인원	8명
교육과정		(종합실무 I) 나노	소재 기반	첨단 소자 제	· 조 및 신뢰성 공정 교육
교육목표		첨단복합소재에 대 성 전문 장비를 운			소자 및 응용제품 제조 공정과
교육내용	2. 나.	노복합소재 제조 및	빚 공정장비	실습	한 분석 및 측정 장비 이해 소재특성 향상 이해
교육특징	1. 기초 교육을 통하여 소자 제조 및 나노공정기술 전반에 대한 이해 2. 교육생들이 직접 참여하여 실습 전문교육의 습득력 향상 3. 나노소재 기반 첨단 소자 제조 및 신뢰성 공정 전문인력양성 및 일자리 창출				
	No	분야		;	장비명
	1	프로그			
활용장비	2	DSSC 제조시스템, Twin Screw Extruder, Hot Press, L 비금속/산화물 OTR, WVTR, 인장강도, DSC, TGA, TMA, 열전도도측정			
	3	박막 공정 활용 투명 전극 제조 실습	Sputtering S Haze meter	System, XRD, a r, 색차계, 터치스	SEM, STEM, X-CT, 면저항측정기, -step, 4-point probe, UV/Vis/Nir, 소재환경분석기, 플렉서블시험기, 환경신뢰성장비, 스핀코터

□ 종합실무 Ⅱ

교육기관	대구테크노파크(대구)					
교육분야		소자공정 심호	화	교육인원	4명	
교육과정		(종합실무 Ⅱ) 나.	노소재 기반	첨단 소자 제3	도 및 신뢰성 공정 교육	
교육목표		첨단복합소재에 C 성 전문 장비를 (소자 및 응용제품 제조 공정과	
교육내용	2. 나	1. 나노구조, 광학, 성분 분석 등 기초 교육을 통한 분석 및 측정 장비 이해 2. 나노복합소재 제조 및 공정장비 실습 3. 품질관리·신뢰성 분석 및 결과 해석을 통한 소재특성 향상 이해				
교육특징	1. 기초 교육을 통하여 소자 제조 및 나노공정기술 전반에 대한 이해 2. 미래차, 차세대 통신 등 활용 분야가 확대되고 있는 전자파차폐 필름 제조 전공정 교육 3. 교육생들이 직접 참여하여 실습 전문교육의 습득력 향상 4. 제품 제조 공정 및 성능/신뢰성평가 전과정 모델 수립 교육생 주도로 진행 5. 나노소재 기반 첨단 소자 제조 및 신뢰성 공정 전문인력양성 및 일자리 창출					
			I			
	No 분야 장비명					
	1	1 측정/분석 FE-SEM, SPM, FT-IR, Raman, 알파스텝, UV/Vis/Nir, 투괴 기초 실습 탁도측정기, XRD, EDS, DSC, TGA, TMA, 삼중집속이온빔 등				
	2	비금속/산화물 나노 방열 소재 부품 제조 실습	OTR, WVTR, (LFA), 제트밀	인장강도, DSC (Micro Air Jet Mi	w Extruder, Hot Press, UTM, TGA, TMA, 열전도도측정기 II) 분쇄/분급 장비, Twin Screw 너, 열전도도, 인장강도, SEM	
활용장비	3	박막 공정 활용 투명 전극 제조 실습	진공 RTR, 클린룸 공조기, SEM, STEM, X-CT, 면저항측정기, Sputtering System, XRD, α-step, 4-point probe, UV/Vis/Nir, Haze meter, 색차계, 터치소재환경분석기, 플렉서블시험기, 습식 RTR, 열증착시스템, 내환경신뢰성장비, 스핀코터			
	4	전자파차폐 필름 제조 공정 실습	복합화, Twin 나노분말 제 <u>:</u>	Screw Extruder, 조시스템, 입도분	나 분쇄/분산 시스템, 나노입자 Hot Press, 20kW RF 플라즈마 보석기, 전자파차폐 소재평가시	